
EVOLUTION CONNECTION

Energy Budgets, Reproductive Costs, and Sexual Selection in Drosophila
Research into how animals allocate their energy resources for growth, maintenance, and reproduction has used a variety of
experimental animal models. Some of this work has been done using the common fruit fly, Drosophila melanogaster. Studies
have shown that not only does reproduction have a cost as far as how long male fruit flies live, but also fruit flies that have
already mated several times have limited sperm remaining for reproduction. Fruit flies maximize their last chances at
reproduction by selecting optimal mates.

In a 1981 study, male fruit flies were placed in enclosures with either virgin or inseminated females. The males that mated with
virgin females had shorter life spans than those in contact with the same number of inseminated females with which they were
unable to mate. This effect occurred regardless of how large (indicative of their age) the males were. Thus, males that did not
mate lived longer, allowing them more opportunities to find mates in the future.

More recent studies, performed in 2006, show how males select the female with which they will mate and how this is affected by
previous matings (Figure 45.8).2 Males were allowed to select between smaller and larger females. Findings showed that larger
females had greater fecundity, producing twice as many offspring per mating as the smaller females did. Males that had
previously mated, and thus had lower supplies of sperm, were termed “resource-depleted,” while males that had not mated were
termed “non-resource-depleted.” The study showed that although non-resource-depleted males preferentially mated with larger
females, this selection of partners was more pronounced in the resource-depleted males. Thus, males with depleted sperm
supplies, which were limited in the number of times that they could mate before they replenished their sperm supply, selected
larger, more fecund females, thus maximizing their chances for offspring. This study was one of the first to show that the
physiological state of the male affected its mating behavior in a way that clearly maximizes its use of limited reproductive
resources.

Figure 45.8 Male fruit flies that had previously mated (sperm-depleted) picked larger, more fecund females more often than those that had

not mated (non-sperm-depleted). This change in behavior causes an increase in the efficiency of a limited reproductive resource: sperm.

These studies demonstrate two ways in which the energy budget is a factor in reproduction. First, energy expended on mating
may reduce an animal’s lifespan, but by this time they have already reproduced, so in the context of natural selection this early
death is not of much evolutionary importance. Second, when resources such as sperm (and the energy needed to replenish it)
are low, an organism’s behavior can change to give them the best chance of passing their genes on to the next generation. These
changes in behavior, so important to evolution, are studied in a discipline known as behavioral biology, or ethology, at the
interface between population biology and psychology.

45.3 Environmental Limits to Population Growth
By the end of this section, you will be able to do the following:
• Explain the characteristics of and differences between exponential and logistic growth patterns
• Give examples of exponential and logistic growth in natural populations
• Describe how natural selection and environmental adaptation led to the evolution of particular life history

patterns

Although life histories describe the way many characteristics of a population (such as their age structure) change over time in a
general way, population ecologists make use of a variety of methods to model population dynamics mathematically. These more

2Adapted from Phillip G. Byrne and William R. Rice, “Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster,” Proc Biol Sci. 273,

no. 1589 (2006): 917-922, doi: 10.1098/rspb.2005.3372.
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precise models can then be used to accurately describe changes occurring in a population and better predict future changes.
Certain long-accepted models are now being modified or even abandoned due to their lack of predictive ability, and scholars
strive to create effective new models.

Exponential Growth
Charles Darwin, in his theory of natural selection, was greatly influenced by the English clergyman Thomas Malthus. Malthus
published a book in 1798 stating that populations with unlimited natural resources grow very rapidly, and then population
growth decreases as resources become depleted. This accelerating pattern of increasing population size is called exponential
growth.

The best example of exponential growth is seen in bacteria. Bacteria reproduce by prokaryotic fission. This division takes about
an hour for many bacterial species. If 1000 bacteria are placed in a large flask with an unlimited supply of nutrients (so the
nutrients will not become depleted), after an hour, there is one round of division and each organism divides, resulting in 2000
organisms—an increase of 1000. In another hour, each of the 2000 organisms will double, producing 4000, an increase of 2000
organisms. After the third hour, there should be 8000 bacteria in the flask, an increase of 4000 organisms. The important
concept of exponential growth is the accelerating population growth rate—the number of organisms added in each
reproductive generation—that is, it is increasing at a greater and greater rate. After 1 day and 24 of these cycles, the population
would have increased from 1000 to more than 16 billion. When the population size, N, is plotted over time, a J-shaped growth
curve is produced (Figure 45.9).

The bacteria example is not representative of the real world where resources are limited. Furthermore, some bacteria will die
during the experiment and thus not reproduce, lowering the growth rate. Therefore, when calculating the growth rate of a
population, the death rate (D) (number organisms that die during a particular time interval) is subtracted from the birth rate (B)
(number organisms that are born during that interval). This is shown in the following formula:

The birth rate is usually expressed on a per capita (for each individual) basis. Thus, B (birth rate) = bN (the per capita birth rate
“b” multiplied by the number of individuals “N”) and D (death rate) = dN (the per capita death rate “d” multiplied by the number
of individuals “N”). Additionally, ecologists are interested in the population at a particular point in time, an infinitely small time
interval. For this reason, the terminology of differential calculus is used to obtain the “instantaneous” growth rate, replacing the
change in number and time with an instant-specific measurement of number and time.

Notice that the “d” associated with the first term refers to the derivative (as the term is used in calculus) and is different from the
death rate, also called “d.” The difference between birth and death rates is further simplified by substituting the term “r”
(intrinsic rate of increase) for the relationship between birth and death rates:

The value “r” can be positive, meaning the population is increasing in size; or negative, meaning the population is decreasing in
size; or zero, where the population’s size is unchanging, a condition known as zero population growth. A further refinement of
the formula recognizes that different species have inherent differences in their intrinsic rate of increase (often thought of as the
potential for reproduction), even under ideal conditions. Obviously, a bacterium can reproduce more rapidly and have a higher
intrinsic rate of growth than a human. The maximal growth rate for a species is its biotic potential, or rmax, thus changing the
equation to:
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Figure 45.9 When resources are unlimited, populations exhibit exponential growth, resulting in a J-shaped curve. When resources are

limited, populations exhibit logistic growth. In logistic growth, population expansion decreases as resources become scarce, and it levels

off when the carrying capacity of the environment is reached, resulting in an S-shaped curve.

Logistic Growth
Exponential growth is possible only when infinite natural resources are available; this is not the case in the real world. Charles
Darwin recognized this fact in his description of the “struggle for existence,” which states that individuals will compete (with
members of their own or other species) for limited resources. The successful ones will survive to pass on their own
characteristics and traits (which we know now are transferred by genes) to the next generation at a greater rate (natural
selection). To model the reality of limited resources, population ecologists developed the logistic growth model.

Carrying Capacity and the Logistic Model
In the real world, with its limited resources, exponential growth cannot continue indefinitely. Exponential growth may occur in
environments where there are few individuals and plentiful resources, but when the number of individuals gets large enough,
resources will be depleted, slowing the growth rate. Eventually, the growth rate will plateau or level off (Figure 45.9). This
population size, which represents the maximum population size that a particular environment can support, is called the
carrying capacity, or K.

The formula we use to calculate logistic growth adds the carrying capacity as a moderating force in the growth rate. The
expression “K – N” indicates how many individuals may be added to a population at a given stage, and “K – N” divided by “K” is
the fraction of the carrying capacity available for further growth. Thus, the exponential growth model is restricted by this factor
to generate the logistic growth equation:

Notice that when N is very small, (K-N)/K becomes close to K/K or 1, and the right side of the equation reduces to rmaxN, which
means the population is growing exponentially and is not influenced by carrying capacity. On the other hand, when N is large,
(K-N)/K comes close to zero, which means that population growth will be slowed greatly or even stopped. Thus, population
growth is greatly slowed in large populations by the carrying capacity K. This model also allows for the population of a negative
population growth, or a population decline. This occurs when the number of individuals in the population exceeds the carrying
capacity (because the value of (K-N)/K is negative).

A graph of this equation yields an S-shaped curve (Figure 45.9), and it is a more realistic model of population growth than
exponential growth. There are three different sections to an S-shaped curve. Initially, growth is exponential because there are
few individuals and ample resources available. Then, as resources begin to become limited, the growth rate decreases. Finally,
growth levels off at the carrying capacity of the environment, with little change in population size over time.

Role of Intraspecific Competition
The logistic model assumes that every individual within a population will have equal access to resources and, thus, an equal
chance for survival. For plants, the amount of water, sunlight, nutrients, and the space to grow are the important resources,
whereas in animals, important resources include food, water, shelter, nesting space, and mates.
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In the real world, phenotypic variation among individuals within a population means that some individuals will be better
adapted to their environment than others. The resulting competition between population members of the same species for
resources is termed intraspecific competition (intra- = “within”; -specific = “species”). Intraspecific competition for resources
may not affect populations that are well below their carrying capacity—resources are plentiful and all individuals can obtain
what they need. However, as population size increases, this competition intensifies. In addition, the accumulation of waste
products can reduce an environment’s carrying capacity.

Examples of Logistic Growth
Yeast, a microscopic fungus used to make bread and alcoholic beverages, exhibits the classical S-shaped curve when grown in a
test tube (Figure 45.10a). Its growth levels off as the population depletes the nutrients. In the real world, however, there are
variations to this idealized curve. Examples in wild populations include sheep and harbor seals (Figure 45.10b). In both
examples, the population size exceeds the carrying capacity for short periods of time and then falls below the carrying capacity
afterwards. This fluctuation in population size continues to occur as the population oscillates around its carrying capacity. Still,
even with this oscillation, the logistic model is confirmed.

VISUAL CONNECTION

Figure 45.10 (a) Yeast grown in ideal conditions in a test tube show a classical S-shaped logistic growth curve, whereas (b) a natural

population of seals shows real-world fluctuation.

If the major food source of the seals declines due to pollution or overfishing, which of the following would likely occur?

1306 Chapter 45 • Population and Community Ecology

Access for free at openstax.org.



a. The carrying capacity of seals would decrease, as would the seal population.
b. The carrying capacity of seals would decrease, but the seal population would remain the same.
c. The number of seal deaths would increase but the number of births would also increase, so the population size would

remain the same.
d. The carrying capacity of seals would remain the same, but the population of seals would decrease.

45.4 Population Dynamics and Regulation
By the end of this section, you will be able to do the following:
• Give examples of how the carrying capacity of a habitat may change
• Compare and contrast density-dependent growth regulation and density-independent growth regulation,

giving examples
• Give examples of exponential and logistic growth in wild animal populations
• Describe how natural selection and environmental adaptation leads to the evolution of particular life-history

patterns

The logistic model of population growth, while valid in many natural populations and a useful model, is a simplification of real-
world population dynamics. Implicit in the model is that the carrying capacity of the environment does not change, which is not
the case. The carrying capacity varies annually: for example, some summers are hot and dry whereas others are cold and wet. In
many areas, the carrying capacity during the winter is much lower than it is during the summer. Also, natural events such as
earthquakes, volcanoes, and fires can alter an environment and hence its carrying capacity. Additionally, populations do not
usually exist in isolation. They engage in interspecific competition: that is, they share the environment with other species
competing for the same resources. These factors are also important to understanding how a specific population will grow.

Nature regulates population growth in a variety of ways. These are grouped into density-dependent factors, in which the density
of the population at a given time affects growth rate and mortality, and density-independent factors, which influence mortality
in a population regardless of population density. Note that in the former, the effect of the factor on the population depends on
the density of the population at onset. Conservation biologists want to understand both types because this helps them manage
populations and prevent extinction or overpopulation.

Density-Dependent Regulation
Most density-dependent factors are biological in nature (biotic), and include predation, inter- and intraspecific competition,
accumulation of waste, and diseases such as those caused by parasites. Usually, the denser a population is, the greater its
mortality rate. For example, during intra- and interspecific competition, the reproductive rates of the individuals will usually be
lower, reducing their population’s rate of growth. In addition, low prey density increases the mortality of its predator because it
has more difficulty locating its food source.

An example of density-dependent regulation is shown in Figure 45.11 with results from a study focusing on the giant intestinal
roundworm (Ascaris lumbricoides), a parasite of humans and other mammals.3 Denser populations of the parasite exhibited
lower fecundity: they contained fewer eggs. One possible explanation for this is that females would be smaller in more dense
populations (due to limited resources) and that smaller females would have fewer eggs. This hypothesis was tested and
disproved in a 2009 study which showed that female weight had no influence.4 The actual cause of the density-dependence of
fecundity in this organism is still unclear and awaiting further investigation.

3N.A. Croll et al., “The Population Biology and Control of Ascaris lumbricoides in a Rural Community in Iran.” Transactions of the Royal Society of Tropical

Medicine and Hygiene 76, no. 2 (1982): 187-197, doi:10.1016/0035-9203(82)90272-3.

4Martin Walker et al., “Density-Dependent Effects on the Weight of Female Ascaris lumbricoides Infections of Humans and its Impact on Patterns of Egg

Production.” Parasites & Vectors 2, no. 11 (February 2009), doi:10.1186/1756-3305-2-11.
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